The University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center is one of the top cancer treatment and research centers in the country. In 2016, the National Cancer Institute elevated UMGCCC to its designation as a comprehensive cancer center — one of just 51 in the nation — a designation renewed in 2021. As part of the University of Maryland Medical Center, we offer innovative approaches to diagnosing and treating all types of cancer, conduct cutting-edge research to bring the latest advances in cancer treatment directly to our patients, and provide cancer screening and patient education services.

Quick Numbers

- 57,000+ Outpatient Visits
- 1,300+ Inpatient Admissions
- 3,000+ New Patients Annually
- 325 Clinical Trials
- 280 Physicians and Researchers
- $113 Million Research Funding
- 3,500+ Telemedicine Appointments

Cancer Treatment Specialties

- Blood and Marrow Transplant
- Bone and Soft Tissue Cancer
- Brain Cancer
- Breast Evaluation and Treatment
- Cardio-Oncology
- Endocrine Malignancies
- Gastrointestinal Cancer
- Genitourinary Cancer
- Gynecologic Cancer
- Head and Neck Cancer
- Hematologic Malignancies
- Neuro-Oncology
- Ocular Oncology
- Pediatric Oncology
- Skin Cancer
- Thoracic Cancer

Outstanding Patient Care & Scientific Excellence

A team approach to care, in which specialists from all cancer disciplines work together to develop an individualized treatment plan for each patient.

Minimally Invasive Treatment Options, including stereotactic body radiation therapy, robot-assisted surgery and the newest, targeted drug therapies.

Innovative Clinical Trials offering patients promising new therapies, often years before they are available commercially.

Patient-focused Treatment Environment featuring private rooms for all inpatients, the Stoler Pavilion for outpatient care and a dedicated pharmacy and infusion center.

An active translational **research program**, making advances in developing cancer vaccines, new technologies, novel cancer-fighting agents and promising combination therapies.

Top-rated Nursing Staff specially trained in cancer care and consistently rated as outstanding in patient satisfaction surveys.

Support Services, including social work, patient navigators, genetic and nutrition counseling, palliative care and a specialized image renewal center offering wigs, skin care and other services.

Education, outreach and free cancer screenings for underserved individuals through the **Baltimore City Cancer Program**. Find out more at umm.edu/hope or by calling 410-328-HOPE.

The University of Maryland Cancer Network allows Maryland residents to benefit from specialized cancer expertise and clinical trials close to home.
OUR NATIONAL PROFILE

In 2016, UMGCCC became a National Cancer Institute (NCI)-Designated Comprehensive Cancer Center, a distinction shared by just 51 centers across the US.

UMGCC ranked “high performing” among the nation’s cancer programs according to U.S. News & World Report’s Best Hospitals list.

Cancer research funding at UMGCCC has grown dramatically since 2002—from $19.4 million to $113 million—and continues to drive scientific discovery by our cancer experts, all of whom are faculty of the UM School of Medicine.

UMGCC is a leader in addressing cancer disparities, with research focused on improving access to care and treatment outcomes for minorities, who represent 56 percent of the patients in our clinical trials, compared to 16 percent nationally. The center was one of eight nationwide chosen to work with the American Society of Clinical Oncology (ASCO) and Susan G. Komen* to reduce disparities in care for Black women diagnosed with breast cancer.

The Maryland Proton Treatment Center is a state-of-the-art facility that provides proton therapy, a highly advanced and precise form of radiation for adult and pediatric patients that increases the radiation dose to tumors while decreasing the dose to healthy, surrounding tissue.

UMGCC is a national leader in developing immunotherapy approaches that train a patient’s own immune system to fight cancer. More than two dozen clinical trials utilize immunotherapy and are supported by UMGCCC’s Fannie Angelos GMP (Good Manufacturing Practice) Lab that permits cancer center investigators to genetically engineer patients’ T cells to recognize and attack their cancers.

UMGCC was the first cancer center in the Baltimore/Washington area to offer CAR-T cell therapy for aggressive B cell lymphomas. We now offer CAR-T therapy for several types of B cell lymphoma, leukemia and myeloma. UMGCCC has the most advanced cell therapy research and production laboratory in the region which is developing the next generation of cellular therapies for blood cancers.

The GammaPod is a stereotactic breast radiation therapy system all designed specifically for breast cancer treatment. This FDA-cleared technology was invented at the University of Maryland School of Medicine and delivers partial breast radiation therapy in a targeted and precise manner and can significantly shorten treatment time with minimal side effects. Patients can participate in clinical trials which may simplify the treatment of early stage breast cancers with fewer side effects.

Galeterone, a drug invented at UMGCCC by investigators Dr. Angela Brodie and Dr. Vincent Njar, has shown significant activity against advanced prostate cancer. More recent studies are promising in laboratory models of pancreatic cancer. A clinical trial for this difficult disease starts soon.

Dr. Graeme Woodworth received FDA clearance to become the first in the US to open the blood-brain barrier, which protects the brain from toxins but makes it difficult to treat brain cancer with chemotherapy. By using focused ultrasound and microbubbles, UM can disrupt the barrier and inject an agent directly into a brain tumor.

UM’s 950 MHz Nuclear Magnetic Resonance (NMR) magnet makes possible Dr. Kristin Varney and Dr. David Weber’s study of RAS proteins, which drive the growth of most cancers. This cutting-edge technology is now complemented by the state-of-the-art cryo-electron microscopy facility which gives UMGCCC the most advanced structural biology analysis capabilities in the country.

Rendering of the calmodulin protein, which NMR experiments show binds to RAS